Enhancing Applications Performance on Intel Paragon
thr ough Dynamic Memory Allocation’

Subhash Saini and Horst Simon
NAS-NASA Ames Research Centéfail Stop 258-6, Mdett Field, CA 94035-1000

Abstract server system buérs and the amount of memory avail-
able for the usés application. Methodology for the inves-
|tigations is given in Sec. 5. Based upon our numerical

memory (VM). The OS manages virtual memory by per_experiments, the for_mglatgd hypothesjs i$ given in Sec. 7.
forming two services. Firstlyaging-in service pages the The remedies for eliminating the paging-in of empty data

executable code dm the service node to the compute &rays and thereby enhancing the performance of the
nodes. This includes the paging-in of empty dataecorr @pplications are given in Sec. 8. Section 9 deals with the
sponding to statically allocated arrays. Secongigging- variation in _performance Whe_n the apphcatlo_n starts pag-
out service is performed by paging the unused part of theiNd against itself. Our conclusions are drawn in Sec. 10.
OSF server to the boot node to make space available for
the usels executable code. These paging-in and paging-
out activities take place simultaneously and drastically
degrade the performance of the user code héve inves-
tigated this poblem in detail, and found that the dynamic
allocation of memory completely eliminates the unneces-
sary and undesirable effects of paging-in empty data
arrays fpm the service node to the compute n_odes and The Paragonsystem is based on ti6d bit i860 XP'M
thereby inceases the performance of the applications con- microprocessor [3] by Intel. TH860 xPM microproces-

. . 0 o

sideted in the pesent work by 30% to 40%. sor has2.5 million transistors in a single chip and runs at
] _ 50 MHz The theoretical speed 190 MFLOPSIn 32 bit

1: Intr oduction floating point and75 MFLOPSfor 64 bit floating opera-

tions. Thei860 XP'M features32 integer address registers

The Numerical Aendynmical Simulation (NAS) Sys- with 32 bits each. It ha32 floating point registers witB2
tems Divisionreceived arintel Touchstone Sigmproto- bits each. The floating point registers can also be accessed
type modelParagon XP/S-13n February 19931t was asi16floating point registers witB4 bits each o8 floating
found that performance of many applications including the point registers witi28 bits each. Each floating point reg-
assembly coded single no@AS 3routine DGEMM [1] ister has two read ports, a write port and two-bidirectional
was lower than the performance bimel iPSC/860This ports. All these ports aré4 bits wide and can be used
finding was quite puzzling since the clock of the micropro- simultaneouslyThe floating point registers serve as input
cessoi860 XPused in théParagonis 25%faster than the g the floating point adder and multipliém vector compu-
microprocessoi860 XRused in thentel iPSC/8602,3]. tations, these registers are used asetmifvhile the data
It was also found that the performance of MAS Parallel cache serves as vector registers. /868 XPM micropro-
Benchmarks (NPE),5] is enhanced by aboB0%if they cessor hag6 KBof instruction and.6 KB of data caches.

are run for second time inBDloop. Furthermore, the per- ; . ;
formance oDGEMMwas identical for the first run and the The data cache hasiabit path to the integer unit al@8

second run on a service node, but on a compute node thbit data path to the floating point unit. TiB&0 XP™ has
performance of the second run was abtfl¥ better than a number of advanced features to facilitate high execution
the first run. These anomalies in the performance on therates. Thé860 XP'M microprocessos floating point unit
Paragonled us to investigate the problem in more detail. integrates single-cycle operatiod¥ bit and 128 bit data
This in turn led us to propose a method of dynamic alloca- paths on chip and B28bit data path to main memory for
tion of memory that increases the performance of thefast access to data and transfer of results. Floating point

The Paragon operating system (OS) supports virtual

2. Paragon Overview

2.1: The i860 XP micoprocessor

applications by abotg0%to 40% add, multiply and fetch from main memory are pipelined
In Sec. 2 we give a brief overview of tRaragonsys- operations, and they take advantage of a three-stage pipe-
tem. Sec. 3 gives the description of BIeAS 3kernel and line to produce one result every clock f8# bit add or

NPB used in the investigations. Section 4 discusses themultiply operations an@4 bit adds. Thes4 bit multiplica-
allocation of memory per node for thngicrokernel, OSF tion takes two clocks.

2.2: NAS Intel Paragon XP/S-15 at this time, for a total @27 nodes. When a user logs onto
the Paragon the shell runs on one of the four service

A single node of théaragon XP/S-136] consists of nodes. In the current release of Beragon OSprocesses

two i860 XP'M microprocessors: one for computation and 40 ot move between service nodes to provide load bal-
the other for communication. The compute processor is for2Ncing. Howeverthe load leveler decides on which node a
computation and the communication processor handles alPrOcess should be started. In principle, partitions and sub-
message-protocol processing thus freeing the computatiorP@rtitons may overlap. For instance, there could be a sub-
processor to do computations. Currenthe communica- partition caIIedcompute.part]:o.n.5|st|ng of node®-31 of
tion processor isotused in the&NASParagon Each com- -COMpute and another subpartition calletompute.part2
pute processor haks MB of local memory but aNAS consisting of node45-63 of .compute However in the
only about 6 MB is available for applications, the rest current release of the operatlng_system_ori\tAS Para-
being used for the micro kern€)SF server and system gon, _there are wo pr_oblems which restrict the_ use of sub-
buffers. partitions. First, running more than one application on a
The NAS Paragm has256 slots for nodes. Slots are 1°de (€ither two jobs in the same partition or jobs in over-
given physical node numbers frobnthrough255. Slots Iappmg partitions) may cause the system to crash. Second,
are physically arranged in a rectangular grid of &&ey Fhe eX|sten_0e of overlapping partitions sometimes causes
16. There are service nodes: four of them hat® MBof jobs to wait when they need not. For these two reasons,

memory each and the other four h@&MB of memory ~ LN€re are currently no subpartitions of thempite parti-
each. ColumrD and columnl4 have no physical nodes, UM All jobs run directly on thecomputepartition.

The service partition contairisnodes in the last column. 3: .

One of these service nodes is a boot node. This boot nodg' - Paragon Operating System

has32 MB of memory and is connected toR@dundant . - .

Array of Independent Disks-1 (RAID-The compute par- TheUNIX operating system was originally designed for
tition has208 nodes which occupy columdsthrough3. sequential computers and is not very well suited to the per-
Compute processors are given logical numbetisrough formance of massively parallel applications. Ha¥agon

207, Compute processors are arranged 116 ay 13 rect- operating system is based_upon two operating systems: the
angular grid . Th@27 nodes are arranged in a two-dimen- Mach system fromCarmegie Mellon Universitand the
sional mesh using wormhole routing network technalogy OP€n Softwa Foundatiors OSF/IAD distributed system

The four service nodes comprise the service partition andfor multicomputers [7]. Th@a(agons_ operating system
provides all thaJNIX features includingirtual memory

provide an interface to the outside world, serving fasra S I
endto theParagonsystem. Besides running jobs on the Shell command andutilities; I/O services; and network-
compute nodes, the service nodes run interactive jobsN9 Support forftp, rpcandNFS EachParagonnode has a
such asshellsandeditors They appear as one computer small microkernel irrespective of the role of the node in
runningUNIX. the system. Th®aragonoperating system provides pro-
Theoretical peak performance 4 bit floating point gramming flexibility through virtual memaryn theory

arithmetic is15.6 GFLOPSfor the 208 compute nodes. virtual memory simplifies application development and

Hardware node-to-node bandwidth280 MBpersecond ~ P°rting by enabling code requiring ggrmemory to run on
in full duplex. a single compute node before being distributed across

. : ltiple nodes. The application runs in virtual memory
The nodes of theNAS Paragon are oganized into mu
groups called partitions [6]. Partitions argamized in a \t';/]g'r?r?smﬁagii;natasgﬁgbﬁ’em;ﬁzzgﬁ?]O%Cecess more memory
hierarchical structure similar to that of thi&NIX file sys- phy y '
tem. Each partition has gathnamein which successive . .
levels of the tree are separated by a periods (*.”), analo-3. Applications used
gous to “/” in theUNIX file system. A subpartition con-

tains a subset of the nodes of the parent partition. 3.1: Basic Linear Algebra Subprograms
Currently on theNAS Paragorthere are no subparti-
tions of .computeor .service The root partition (denoted BLAS 1, 2and3 are the basic building blocks for many

by “.”) contains all227 nodes of thd®aragon There are of scientific and engineering applications [1]. For exam-
two subpartitions of the root partition: the compute parti- ple, the dot product is a basic kernellitel's ProSolver
tion, namedcompute contains208 nodes to run parallel ~ Skyline Equation Solver (B8olverSES)[8], a direct
applications. The service partition, namsdrvice con- solver using skyline storage, useful for performing Finite
tains four nodes devoted to interactive jobs. The remainingElement Structural analysis in designing aerospace struc-
eight nodes are not part of a subpartition and serve as diskures.BLAS 3(matrix-matrix)kernels are basic kernels in
controllers and are connected to fRAID for 1/0. The Intel's ProSolver Dense Equation Solver ¢BolverDES)
four nodes of the service partition appear as one computer9], a direct solver that may be applied in solving compu-
In summary the NAS Paragorsystem hag08 compute tational electromagnetic€EM) problems usingviethod
nodes, HiPPI nodes,1 boot node8 disk hodes4 service of Moments (MOM). BLAS&hdBLAS 3are basic kernels
nodes of whichL is a boot node andl nodes are not used in LAPACK][1]. In the present papere have usedBLAS

3 routine calledGEMMto computeC = A*B, whereA and ning a debugging version of the microkernel. The micro-
B are real general matrices. TBEEMM s a single node kernel is the only system software component that is in the
assembly coded routine and as such involves no interpromemory of each compute node at all times including its

cessor communication. internal tables and bigfrs. TheOSFserver is in the mem-
ory of each compute node initiallyut as pages are needed
3.2: NAS Parallel Benchmarks by the application unused parts of server is paged-out to

the boot node. Across the whole machineRheagon OS

The NPB[4,5] were developed to evaluate the perfor- takes2 GB of memory out of total 08.3 GBof memory

mance of highly parallel supercomputers. One of the mainthus leaving onlyt.25 GBfor the use's application.

features of these benchmarks is thgéncil and paper
specification, which means that all details are specified
algorithmically thereby avoiding many of the faitilties
associated with traditional approaches to evaluating highly5.1: Operating System and Compiler

parallel supercomputers. ThE°B consist of a set of eight

problems each focusing on some important aspect of TheParagon O3used is versioRR1.1 and the~ortran
highly parallel supercomputing for computational aero- compiler is4.1 [11]. The compiler options used are the
sciences. The eight problems include five kernels andf 77 -O4 -Mect -Knoieee abc.f -lkmath
three simulated computational fluid dynami¢GFD) [12] and the compilation was done on the service node.
applications. The implementation of the kernels is rela- There is a compiler option by which one may set the size
tively simple and straightforward and gives some insight of the portion of the cache used by the vectorizemim-

into the general level of performance that can be expectede bytes. Thisnumbermust be a multiple of6, and less

for a given highly parallel machine. The other three simu- than the cache size 16384 of the microprocei§&dr XP
lated CFD applications need morefeft to implement on In most cases the best results occur winemberis set to
highly parallel computers and are representative of the4096 which is the default. In view of this we decided to
types of actual data movement and computation neededhoose the default siZeKB and the highest optimization
for computational aerosciences. In the present paper level of4 was used. This level of optimization generates a
have used the block tridiagon@T) benchmark, which basic block for eaclrortran statement and scheduling
was ported from théntel iPSC/860[10] to theParagon within the basic block is performed. It does perform
The NPB all involve significant interprocessor communi- aggressive register allocation for software pipelined loops.
cation with the exception of the Embarrassingly Parallel In addition, code for pipelined loops is scheduled several
(EP) benchmark which involves almost no interprocessor ways, with the best way selected for the assembly file. The

5: Methodology

communication. option - Knoi eee was used, which produces a program
that flushes denormals @ on creation (which reduces
4 Distribution of memory on Paragon underflow traps) and links in a math library that is not as

accurate as the standard librdoyt ofers greater perfor-
) mance. This library &érs little or no support for excep-
The exact amount of memory available for the sser tjonal data types such B$F andNaN, and will not trap on
code is very hard to estimate as it depends upon severaych values when encountered. If used while compiling, it
factors such as the history of tRaragonsystem since the (g|is the compiler to perform real and double precision
last reboot, number of nodes, size of the systefietsuet gjyides using an inline divide algorithm thafest greater
by the user at run time etc. The approximate breakdown ofperformance than the standard algorithm. This algorithm
memory per node for tHEAS Paragons shown in@ble produces results that tf from the results specified by
1. Memory taken by the microkernel per node ofNA& {he |EEE standard by no more than three units in the iast

o I Ip).
Table 1: Distribution of Memory on each NAS compute place(ulp)
processor 5.2: Procedure for 1st Run and 2nd Run
Component of OS Memory in MB It was found that the performance NPB codes is
enhanced by aboB0%if they are run for second time in a
Microkernel 5 DO loop. Furthermore, the performance DEEVM was

identical for the first run and second run on a service node

OSF Server 4 but on a compute node the performance of the second run

M Bdé 1 was aboutl0% better than the first run. In our numerical
essage buer results section we will present results for a first run and a

Free Memory 6 second run of an application. The procedure to obtain first

run and second run for a given application is illustrated in
Table 2. In this table, BOloop indexi running froml to
Paragonis bigger than claimed bntel as theNASis run- 2 is inserted just before the section of the code we want to

time for benchmark purposes. In this table fingt run 6: Results
corresponds to=1 and thesecond rurcorresponds te=2

as shown in able 2. The overhead in calling the function Fig 1(a) shows the results for the assembly c@&isdlS

DCLOCK was estimated to be abdubx10%second. 3 routine DGEMM on a service node obtained for the first
run and the second run. Notice that on the service node the
Table 2: Procedure for obtaining first run and second results for first run and second run are identical. The rou-
run tine DGEMMis a single node routine and as such involves
no interprocessor communication.
PROGRAM abc
I Figure 1(a): DGEMM on service node. Figure 1(b): DGEMM on compute node.
I:D | — 1, 2 50 50
t0 = DCLOCK() 45 I 45y
t1 = DCLOCK 40(I 40
CALL[XEENN(,...,) 35 35
t2 = DCLOCK() 0 o
tine =t2 - (tl - tO) £ . £ .
ENDDO g Z
20+ 20
END 15 15
10| 10
50 5
5.3: Compiling and linking on the partitions 0 0
1st Run 2nd Run 1st Run 2nd Run

The Paragonsystem has two types of partitions: (a) 2 Fig 1(b) shows the results for the assembly cdiedlS
service partitiorand (b) a&compute partitionThe partition 3 on a compute node for the first run and second run. The
where an application runs can be specified when you comperformance of thBGEMVis 27 MFLOPS for the first run
pile and execute it. Thewx switch defines the preproces- and 45 MFLOPSfor the second run. The performance
sor symbol NODE and links with thenx library libnx.a obtained by the second run is abd06 better than the
[11]. It also links with the start-up routine—the controlling - performance by the first run.
process that runs in the service partition and starts up theé Figure 2 shows the performance of BiE TheBT code
application in the compute partition. Commands to run the ysed is arintel iPSC/860version which was ported to the
application on service partition and compute partition are NAS ParagonTimings reported for thBT in Figure 2 are
given in Table 3. according to theNPB rules. The first run take829 sec-
onds whereas the second runs tal@3seconds. The per-

Table 3: Compiling and executing on Mesh formance of the second run is ab&@% better than the

" - - first run.
Service Partition Compute Partition
Figure 2: APPBT from NPB on 64 compute nodes
700
> f77 prog.f > f77 prog.f -nx
> a.out > a.out -sz 1 eoor
> a.out -sz 64 500|-
8400*
5.4: Numerical experiments 5 w0l
The following two numerical experiments were pe 200¢
formed: 100
(a) First experiment: Experiment in which no interpro-
cessor communication is involved and only communic ° IstRun Znd Run

tion is due to the paging-in of executable code from t...

service node to the compute node and if memory require- It is clear from the Figures 1-2 that the performance of
ment exceed$ MB per node, then paging-out of the the second run is about 30% to 40% higher than the first
unused part of th@SFserver from the compute nodes to run. This degradation in the performance for the first run is
the boot node. The single no@AS 3routine DGEMM not acceptable since users will always run their code once.
was used. Figure 3 shows the performance BGEMM on two

(b) Second experiment:Experiment in which interpro- compute nodes , i.e. on nofleandnode 1 The function
cessor communication is involved in addition to the com- gsync was used to synchronize all node processes. The
munication due to paging-in and paging-out. TB& function gsync [6] performs a global synchronization
application from thé&NPBwas used. operation. When a node process callsgbgnc() func-

tion, it waits until all other nodes in the application call
gsync() before continuing. All nodes in the application
must callgsync before any node in the application can
continue. TheMFLOPS rate shown in Figures 3-8 are for
the first run. The performance has decreased frdm
MFLOPSto 22 MFLOPS

Figure 4 shows the performance BE&EMM on four

Figure 6 shows the performance@BEMV on sixteen
nodes. Here the average performance has been further
decreased to abo& MFLOPS The performance on at
least one node (nodd is 21 MFLOPS much better than
the rest of the nodes.

compute nodes. The performance has further degraded to

an average of about3 MFLOPSexcept for nodel on
which it is aboutl8 MFLOPS The reason for relatively
better performance on nodehan on node§, 2and3 is

that nodel happens to be the first node to receive the

empty data arrays from the service node.

Figure 4: DGEMM on four compute nodes.
20

181 7

MFLOPS
=
=
|

(o]
T
I

0 3

1
Node Num%er

Figure 5 shows the performance BE&EMM on eight

Figure 7 shows the performancel#EMVIon 32 com-
pute nodes. Here the average performance has further
decreased to abo8tMFLOPS Unlike in Figures 4-6, here
the performance on two compute nodes (r2siend node
29) is relatively better than on the rest of the nodes.

compute nodes. The performance has degraded further to

an average of MFLOPS The performance on nodkeis
relatively better than the rest of the nodes.

Figure 8 shows the performanceDgEMM on 64 com- to terminate the process of loading. From our experience
pute nodes. Increasing the number of nodes from 32 to 64wve found that the run time optiempl k is not a solution
has further degraded the performance. Here the perforfor codes which need more thanMB of memory per
mance on node, 26 and33 is much better compared to node.
the rest of the nodes.

8.2: Dynamic Allocation of memory

7. Hypothesis The dynamic allocation of memory can be performed in
a number of ways. The best method is to useAtHeO-

It is clear from Figures 2-8 that as we increase the num-CATE statement [13]. ThALLOCATE statement allocates
ber of nodes, the performance decreases #bMFLOPS storage for each pointéiased variable and allocatable
to 1.5 MFLOPSfor the first run. The unused part of the common block which appears in the statement. The
OSFserver must be paged out to the boot node, whenevePEALLOCATE statement causes the memory allocated for
the memory requirement is more than at®MB, to pro- each pointebased variable or allocatabl@OMMON block
vide space for the arrays BandC in the program on the that appears in the statement to be deallocated. Fortunately
compute node. While the paging-out of the unused part ofboth ALLOCATE andDEALLOCATE are available [13]. A
the OSF server is going on, pages containing arrays dynamic or allocatabl€OMMON block is a common block
andC are being paged-in from the service node to each ofwhose storage is not allocated until an exphtit OCATE
the compute nodes. These paging-in and paging-out activstatement is executed. The syntax of statemahtsO-
ities take place simultaneously at the first reference andCATE andDEALLOCATE is given inTable 4 and their use
use of the arrayA, B andC andnot at theDl MENSI ON in Appendix A
statement in the program. The net result is that the simulta-)
neous paging-in and paging-out creates additiondictraf Table 4: Syntax for using ALLOCATE and
in the network that increases with the increasing number DEALLOCA TE statements
of compute nodes.

ALLOCATE (nane[, nane]...[, STAT= var])

8: Remedies for eliminating paging-in of

DEALLOCATE (al,[,al]...[, STAT= var])
empty data arrays

nane is a pointetbased variable or the name of an
8.1: Locking the memory at run time allocatable COMMON block enclosed in slashes

The activity of paging-in can be removed by using the al is a pointetbased variable or the name of an allocat-

run time optior+ pl k [6] which causes all of the applica- ableCOMVON block enclosed in slashes.
tion’s pages to be brought at the start of execution and to \, 5 is an integer variable, integer array element, or
remain resident. The results of doing this are shown in inte ber of

i : ger member of a structure.
Figure 9. The performance on each compute nod is
MFLOPS in the first run.

The run time option pl k was tried on codes of dif- We have found that the mostfesdtive and elegant
ferent sizes and we found that for a code that needs aboumethod of removing the undesirable and unnecessary pag-
7 MB per compute node, the time for loading the code ing-in of empty arrays provided by tiaragonOSis to
from the service node on to the compute node became veryise dynamic allocation of memory inside the application.
large. In many cases load time became ggeléinat we had The dynamic allocation of memory creates the arfqyB

andC at run time on the compute processors rather than aformance goes down as the unused part oOBE server
compile time on the service node. The static allocation ofis being paged-out from the compute node to the boot

memory creates the arrafs BandC at compile time and

node to make space available for the application. As we

at run time they are paged-in to the compute processors afurther increase the size of the matrix, a limit is reached at
and when they are first referenced and used. The perforaboutl0 MBbeyond which none of th@SFserver is left

mance ofDGEMMusing dynamic allocation of memory is
shown in Figure 10. The dynamic memory allocation

removes a serializing bottleneck and communication over-

head.

The results foBT using dynamic allocation of memory
are shown in Figurell We find that dynamic allocation of
memory increases the performanceBif by 29% and
gives the correct performance in the first run.

Figure 11: BT using dynamic allocation of memory
600

5001

w B

o o

o o
T T

Time in Seconds

N

o

o
T

100

1st Run 2nd Run

9: Paging of application against itself

The performance ddGEMMas a function of the size of
the matrix is shown in Figure 12. When the size of the
matrix is512x512it needs abou.3 MB of memory per
node. As we increase the size of the matrix, initially per-

to be paged-out and the application starts paging-out
against itself. The &fct of paging an application against
itself is clearly seen at aboilt MB when the performance

of the DGEMMgoes down to abodt MFLOPS

Figure 12: MFLOPS Vs. Size of the matrix.

50

(6 MB)(10 MB)(ll MB

3]
T

600 700 800
Size of Matrix

3?00 400 500 900

10: Conclusions

(1) Paging-in of data (empty arrays) during execution
time degrades the performance of the application and
should be avoided. This service performed byRamgon
operating system is unnecessary and is undesirable.

(2) One can use the run-time optiopl k to lock the
memory to resolve the problem. Howeuée use of the
pl k option enormously increases the load time if the
memory required by the application is abautMB or
higher per node. A genuine remedy for unnecessary
effects of paging is to use dynamic allocation of memory
using ALLOCATE andDEALLOCATE statements [13]. On
NAS Paragoror any otherParagonsystem, irrespective
of the memory requirement of the application, dynamic
allocation of memory shouldLWAYS be used to elimi-
nate the service of paging-in of empty data arrays from the
service node to the compute processbhe use of
dynamic allocation of memory increases the performance
of applications, considered in the present work, by 30% to
40%.

(3) The performance of the application starts decreas-
ing when the application starts paging-out and ultimately it
becomes unacceptable. On M&SParagon after10 MB
the application starts paging against itself.

(4) The use of virtual memory by tl@SF/1AD oper-
ating system has been a major drawback to the perfor-
mance of theParagon The lage amount of memory
required byOSF/1 ADreduces available user memory to
about6 MB per compute processorhis is a step back-

ward from the roughl$ MB per node memory available to [13] PARAGONM OSF/1, Fortran Language Refence
the user on théntel iPSC/860 Using the virtual memory Manual, April 1993, Intel Corporation.

system can lead to a significant drop in performance, and _ .

to other not very transparent performance variations, [14] Proceedings of Intel Supsmputing Usés Gioup
which make the machine less predictable for the.user Meeting Oct. 3-6, 1993, St. Louis, Missouri

These variations and the lack of memory could be toler- [f15] Paragon System SoftwaRelease 1.1, Release Notes for
ated as a price for increased system stability and ease o the Paragon XP/S SystemOctober 1993, Intel
use. Howeverthe promise of usin@SF/1 ADfor more

Corporation.
reliable production operation has not yet materialized. P _ o
This may change over time in favor of tharagon [16] Thanh Phung, private communication, Nb993.
(5) For any robust architecture and operating system, APPENDIX A

the performance of the applications should not change

whether they are run with static allocation of memory or Dynamic Allocation of Memory in Fortran
dynamic allocation of memon®On theParagon system,

the performance of the applications is considerably higher

(30%to 40%in the present paper) if dynamic allocation of Figure 13 shows the Fortran program with static alloca-

memory rather than static allocat_ion of memory is used. jon of memory and Figure 14 shows a modified progam
In summaryther_e are still major challenges ahe'c_ld for with dynamic allocation of memary

the Paragon compilers and systems softwaratel is

aware of the problem but so far it has not been docu-

mented anywhere, including the latétlease Notes 1.1

[15, 16]. Figure 13:Fortran program with static allocation of
Acknowledgment One of the authors (SS) grate- memory

fully acknowledges many discussions with David McNab,

Bernard Taversat, Wliam J. Nitzbeg, Thanh Phung, Art PROGRAMabc

Lazanof, and Todd F Churchill. .
REAL a(512), b(512), c(512), x(1024)

* The authors are employees@bmputer Sciences Cor- COMMON /bl 00"15 X

poration The work is supported througtASAcontract cal | subl(a,b,c)
NAS2-12961 .
END
References
Figure 14:Fortran program with dynamic allocation
[1] E. Anderson et al.LAPACK Users’ Guide SIAM, of memory
Philadelphia, 1992.
[2] Overview of the 868" XR Supeomputing PROGRAM abc
Microprocessor1990, Intel Corporation. PARAMETER (nl1=512, n2=1024)
[3] Overview of the 860" XP Superomputing -
Microprocessor1991, Intel Corporation. REAL a(nl), b(nl), c(nl), x(n2)
[4] D. Bailey et al., edsThe NAS Parallel Benchmarks PO NTER (pl, a)
Technical Report RNR-91-02, NAS Ames Research PO NTER (p2, b)
Center Moffet Field, California, 1991. PO NTER (p3, c)

[5] D. Bailey et al.,The NAS Parallel Benchmark Resplts
IEEE Parallel & Distributed technolog$3-51, February COMMON, ALLOCATABLE /bl ockl/ x

1993. = _
PARAGONM OSF/1 e Intel . ALLOCATE (a, STAT = isa)
[6] o 1(;(9)3 OSF/1, Uses Guide Intel Corporation, ALLOCATE (b, STAT = i sb)
. . - ALLCCATE (c, STAT = isc)
[71 OSF/T™ Operating System UserGuide Revision 1.0, ’ .
Prentice Hall Englewood, New Jersé992. ALLOCATE (/ bl ockl/, STAT = isbl k1)
[8] iPSC/860 PoSolvefM-SES Manual May, 1991, Intel
Corporation. CALL subl(a,b,c)
[9] iPSC/860 PuSolvefM-DES Manual March 1992, Intel o
Corporation. DEALLCOCATE(a)
[10] Intel iPSC/860 Uses Guide April 1993 DEALLOCATE(b)
[11] PARAGONM OSF/1 Fortran Compiler Uses Guide, DEALLOCATE(c)
Intel Corporation, April 1993. DEALLQOCATE(/ bl ock1/)
[12] CLASSRCK, Basic Math Library Usés Guide Kuck & END

Associates, Release 1.3, 1992.

Enhancing Applications Performance on Intel Paragon
thr ough Dynamic Memory Allocation’

Subhash Saini and Horst Simon
NAS-NASA Ames Research Centéfail Stop 258-6, Mdett Field, CA 94035-1000

Abstract server system buérs and the amount of memory avail-
able for the usés application. Methodology for the inves-
|tigations is given in Sec. 5. Based upon our numerical

memory (VM). The OS manages virtual memory by per_experiments, the for_mglatgd hypothesjs i$ given in Sec. 7.
forming two services. Firstlyaging-in service pages the The remedies for eliminating the paging-in of empty data

executable code dm the service node to the compute &rays and thereby enhancing the performance of the
nodes. This includes the paging-in of empty dataecorr @pplications are given in Sec. 8. Section 9 deals with the
sponding to statically allocated arrays. Secongigging- variation in _performance Whe_n the apphcatlo_n starts pag-
out service is performed by paging the unused part of theiNd against itself. Our conclusions are drawn in Sec. 10.
OSF server to the boot node to make space available for
the usels executable code. These paging-in and paging-
out activities take place simultaneously and drastically
degrade the performance of the user code héve inves-
tigated this poblem in detail, and found that the dynamic
allocation of memory completely eliminates the unneces-
sary and undesirable effects of paging-in empty data
arrays fpm the service node to the compute n_odes and The Paragonsystem is based on ti6d bit i860 XP'M
thereby inceases the performance of the applications con- microprocessor [3] by Intel. TH860 xPM microproces-

. . 0 o

sideted in the pesent work by 30% to 40%. sor has2.5 million transistors in a single chip and runs at
] _ 50 MHz The theoretical speed 190 MFLOPSIn 32 bit

1: Intr oduction floating point and75 MFLOPSfor 64 bit floating opera-

tions. Thei860 XP'M features32 integer address registers

The Numerical Aendynmical Simulation (NAS) Sys- with 32 bits each. It ha32 floating point registers witB2
tems Divisionreceived arintel Touchstone Sigmproto- bits each. The floating point registers can also be accessed
type modelParagon XP/S-13n February 19931t was asi16floating point registers witB4 bits each o8 floating
found that performance of many applications including the point registers witi28 bits each. Each floating point reg-
assembly coded single no@AS 3routine DGEMM [1] ister has two read ports, a write port and two-bidirectional
was lower than the performance bimel iPSC/860This ports. All these ports aré4 bits wide and can be used
finding was quite puzzling since the clock of the micropro- simultaneouslyThe floating point registers serve as input
cessoi860 XPused in théParagonis 25%faster than the g the floating point adder and multipliém vector compu-
microprocessoi860 XRused in thentel iPSC/8602,3]. tations, these registers are used asetmifvhile the data
It was also found that the performance of MAS Parallel cache serves as vector registers. /868 XPM micropro-
Benchmarks (NPE),5] is enhanced by aboB0%if they cessor hag6 KBof instruction and.6 KB of data caches.

are run for second time inBDloop. Furthermore, the per- ; . ;
formance oDGEMMwas identical for the first run and the The data cache hasiabit path to the integer unit al@8

second run on a service node, but on a compute node thbit data path to the floating point unit. TiB&0 XP™ has
performance of the second run was abtfl¥ better than a number of advanced features to facilitate high execution
the first run. These anomalies in the performance on therates. Thé860 XP'M microprocessos floating point unit
Paragonled us to investigate the problem in more detail. integrates single-cycle operatiod¥ bit and 128 bit data
This in turn led us to propose a method of dynamic alloca- paths on chip and B28bit data path to main memory for
tion of memory that increases the performance of thefast access to data and transfer of results. Floating point

The Paragon operating system (OS) supports virtual

2. Paragon Overview

2.1: The i860 XP micoprocessor

applications by abotg0%to 40% add, multiply and fetch from main memory are pipelined
In Sec. 2 we give a brief overview of tRaragonsys- operations, and they take advantage of a three-stage pipe-
tem. Sec. 3 gives the description of BIeAS 3kernel and line to produce one result every clock f8# bit add or

NPB used in the investigations. Section 4 discusses themultiply operations an@4 bit adds. Thes4 bit multiplica-
allocation of memory per node for thngicrokernel, OSF tion takes two clocks.

2.2: NAS Intel Paragon XP/S-15 at this time, for a total @27 nodes. When a user logs onto
the Paragon the shell runs on one of the four service

A single node of théaragon XP/S-136] consists of nodes. In the current release of Beragon OSprocesses

two i860 XP'M microprocessors: one for computation and 40 ot move between service nodes to provide load bal-
the other for communication. The compute processor is for2Ncing. Howeverthe load leveler decides on which node a
computation and the communication processor handles alPrOcess should be started. In principle, partitions and sub-
message-protocol processing thus freeing the computatiorP@rtitons may overlap. For instance, there could be a sub-
processor to do computations. Currenthe communica- partition caIIedcompute.part]:o.n.5|st|ng of node®-31 of
tion processor isotused in the&NASParagon Each com- -COMpute and another subpartition calletompute.part2
pute processor haks MB of local memory but aNAS consisting of node45-63 of .compute However in the
only about 6 MB is available for applications, the rest current release of the operatlng_system_ori\tAS Para-
being used for the micro kern€)SF server and system gon, _there are wo pr_oblems which restrict the_ use of sub-
buffers. partitions. First, running more than one application on a
The NAS Paragm has256 slots for nodes. Slots are 1°de (€ither two jobs in the same partition or jobs in over-
given physical node numbers frobnthrough255. Slots Iappmg partitions) may cause the system to crash. Second,
are physically arranged in a rectangular grid of &&ey Fhe eX|sten_0e of overlapping partitions sometimes causes
16. There are service nodes: four of them hat® MBof jobs to wait when they need not. For these two reasons,

memory each and the other four h@&MB of memory ~ LN€re are currently no subpartitions of thempite parti-
each. ColumrD and columnl4 have no physical nodes, UM All jobs run directly on thecomputepartition.

The service partition contairisnodes in the last column. 3: .

One of these service nodes is a boot node. This boot nodg' - Paragon Operating System

has32 MB of memory and is connected toR@dundant . - .

Array of Independent Disks-1 (RAID-The compute par- TheUNIX operating system was originally designed for
tition has208 nodes which occupy columdsthrough3. sequential computers and is not very well suited to the per-
Compute processors are given logical numbetisrough formance of massively parallel applications. Ha¥agon

207, Compute processors are arranged 116 ay 13 rect- operating system is based_upon two operating systems: the
angular grid . Th@27 nodes are arranged in a two-dimen- Mach system fromCarmegie Mellon Universitand the
sional mesh using wormhole routing network technalogy OP€n Softwa Foundatiors OSF/IAD distributed system

The four service nodes comprise the service partition andfor multicomputers [7]. Th@a(agons_ operating system
provides all thaJNIX features includingirtual memory

provide an interface to the outside world, serving fasra S I
endto theParagonsystem. Besides running jobs on the Shell command andutilities; I/O services; and network-
compute nodes, the service nodes run interactive jobsN9 Support forftp, rpcandNFS EachParagonnode has a
such asshellsandeditors They appear as one computer small microkernel irrespective of the role of the node in
runningUNIX. the system. Th®aragonoperating system provides pro-
Theoretical peak performance 4 bit floating point gramming flexibility through virtual memaryn theory

arithmetic is15.6 GFLOPSfor the 208 compute nodes. virtual memory simplifies application development and

Hardware node-to-node bandwidth280 MBpersecond ~ P°rting by enabling code requiring ggrmemory to run on
in full duplex. a single compute node before being distributed across

. : ltiple nodes. The application runs in virtual memory
The nodes of theNAS Paragon are oganized into mu
groups called partitions [6]. Partitions argamized in a \t';/]g'r?r?smﬁagii;natasgﬁgbﬁ’em;ﬁzzgﬁ?]O%Cecess more memory
hierarchical structure similar to that of thi&NIX file sys- phy y '
tem. Each partition has gathnamein which successive . .
levels of the tree are separated by a periods (*.”), analo-3. Applications used
gous to “/” in theUNIX file system. A subpartition con-

tains a subset of the nodes of the parent partition. 3.1: Basic Linear Algebra Subprograms
Currently on theNAS Paragorthere are no subparti-
tions of .computeor .service The root partition (denoted BLAS 1, 2and3 are the basic building blocks for many

by “.”) contains all227 nodes of thd®aragon There are of scientific and engineering applications [1]. For exam-
two subpartitions of the root partition: the compute parti- ple, the dot product is a basic kernellitel's ProSolver
tion, namedcompute contains208 nodes to run parallel ~ Skyline Equation Solver (B8olverSES)[8], a direct
applications. The service partition, namsdrvice con- solver using skyline storage, useful for performing Finite
tains four nodes devoted to interactive jobs. The remainingElement Structural analysis in designing aerospace struc-
eight nodes are not part of a subpartition and serve as diskures.BLAS 3(matrix-matrix)kernels are basic kernels in
controllers and are connected to fRAID for 1/0. The Intel's ProSolver Dense Equation Solver ¢BolverDES)
four nodes of the service partition appear as one computer9], a direct solver that may be applied in solving compu-
In summary the NAS Paragorsystem hag08 compute tational electromagnetic€EM) problems usingviethod
nodes, HiPPI nodes,1 boot node8 disk hodes4 service of Moments (MOM). BLAS&hdBLAS 3are basic kernels
nodes of whichL is a boot node andl nodes are not used in LAPACK][1]. In the present papere have usedBLAS

3 routine calledGEMMto computeC = A*B, whereA and ning a debugging version of the microkernel. The micro-
B are real general matrices. TBEEMM s a single node kernel is the only system software component that is in the
assembly coded routine and as such involves no interpromemory of each compute node at all times including its

cessor communication. internal tables and bigfrs. TheOSFserver is in the mem-
ory of each compute node initiallyut as pages are needed
3.2: NAS Parallel Benchmarks by the application unused parts of server is paged-out to

the boot node. Across the whole machineRheagon OS

The NPB[4,5] were developed to evaluate the perfor- takes2 GB of memory out of total 08.3 GBof memory

mance of highly parallel supercomputers. One of the mainthus leaving onlyt.25 GBfor the use's application.

features of these benchmarks is thgéncil and paper
specification, which means that all details are specified
algorithmically thereby avoiding many of the faitilties
associated with traditional approaches to evaluating highly5.1: Operating System and Compiler

parallel supercomputers. ThE°B consist of a set of eight

problems each focusing on some important aspect of TheParagon O3used is versioRR1.1 and the~ortran
highly parallel supercomputing for computational aero- compiler is4.1 [11]. The compiler options used are the
sciences. The eight problems include five kernels andf 77 -O4 -Mect -Knoieee abc.f -lkmath
three simulated computational fluid dynami¢GFD) [12] and the compilation was done on the service node.
applications. The implementation of the kernels is rela- There is a compiler option by which one may set the size
tively simple and straightforward and gives some insight of the portion of the cache used by the vectorizemim-

into the general level of performance that can be expectede bytes. Thisnumbermust be a multiple of6, and less

for a given highly parallel machine. The other three simu- than the cache size 16384 of the microprocei§&dr XP
lated CFD applications need morefeft to implement on In most cases the best results occur winemberis set to
highly parallel computers and are representative of the4096 which is the default. In view of this we decided to
types of actual data movement and computation neededhoose the default siZeKB and the highest optimization
for computational aerosciences. In the present paper level of4 was used. This level of optimization generates a
have used the block tridiagon@T) benchmark, which basic block for eaclrortran statement and scheduling
was ported from théntel iPSC/860[10] to theParagon within the basic block is performed. It does perform
The NPB all involve significant interprocessor communi- aggressive register allocation for software pipelined loops.
cation with the exception of the Embarrassingly Parallel In addition, code for pipelined loops is scheduled several
(EP) benchmark which involves almost no interprocessor ways, with the best way selected for the assembly file. The

5: Methodology

communication. option - Knoi eee was used, which produces a program
that flushes denormals @ on creation (which reduces
4 Distribution of memory on Paragon underflow traps) and links in a math library that is not as

accurate as the standard librdoyt ofers greater perfor-
) mance. This library &érs little or no support for excep-
The exact amount of memory available for the sser tjonal data types such B$F andNaN, and will not trap on
code is very hard to estimate as it depends upon severaych values when encountered. If used while compiling, it
factors such as the history of tRaragonsystem since the (g|is the compiler to perform real and double precision
last reboot, number of nodes, size of the systefietsuet gjyides using an inline divide algorithm thafest greater
by the user at run time etc. The approximate breakdown ofperformance than the standard algorithm. This algorithm
memory per node for tHEAS Paragons shown in@ble produces results that tf from the results specified by
1. Memory taken by the microkernel per node ofNA& {he |EEE standard by no more than three units in the iast

o I Ip).
Table 1: Distribution of Memory on each NAS compute place(ulp)
processor 5.2: Procedure for 1st Run and 2nd Run
Component of OS Memory in MB It was found that the performance NPB codes is
enhanced by aboB0%if they are run for second time in a
Microkernel 5 DO loop. Furthermore, the performance DEEVM was

identical for the first run and second run on a service node

OSF Server 4 but on a compute node the performance of the second run

M Bdé 1 was aboutl0% better than the first run. In our numerical
essage buer results section we will present results for a first run and a

Free Memory 6 second run of an application. The procedure to obtain first

run and second run for a given application is illustrated in
Table 2. In this table, BOloop indexi running froml to
Paragonis bigger than claimed bntel as theNASis run- 2 is inserted just before the section of the code we want to

time for benchmark purposes. In this table fingt run 6: Results
corresponds to=1 and thesecond rurcorresponds te=2

as shown in able 2. The overhead in calling the function Fig 1(a) shows the results for the assembly c@&isdlS

DCLOCK was estimated to be abdubx10%second. 3 routine DGEMM on a service node obtained for the first
run and the second run. Notice that on the service node the
Table 2: Procedure for obtaining first run and second results for first run and second run are identical. The rou-
run tine DGEMMis a single node routine and as such involves
no interprocessor communication.
PROGRAM abc
I Figure 1(a): DGEMM on service node. Figure 1(b): DGEMM on compute node.
I:D | — 1, 2 50 50
t0 = DCLOCK() 45 I 45y
t1 = DCLOCK 40(I 40
CALL[XEENN(,...,) 35 35
t2 = DCLOCK() 0 o
tine =t2 - (tl - tO) £ . £ .
ENDDO g Z
20+ 20
END 15 15
10| 10
50 5
5.3: Compiling and linking on the partitions 0 0
1st Run 2nd Run 1st Run 2nd Run

The Paragonsystem has two types of partitions: (a) 2 Fig 1(b) shows the results for the assembly cdiedlS
service partitiorand (b) a&compute partitionThe partition 3 on a compute node for the first run and second run. The
where an application runs can be specified when you comperformance of thBGEMVis 27 MFLOPS for the first run
pile and execute it. Thewx switch defines the preproces- and 45 MFLOPSfor the second run. The performance
sor symbol NODE and links with thenx library libnx.a obtained by the second run is abd06 better than the
[11]. It also links with the start-up routine—the controlling - performance by the first run.
process that runs in the service partition and starts up theé Figure 2 shows the performance of BiE TheBT code
application in the compute partition. Commands to run the ysed is arintel iPSC/860version which was ported to the
application on service partition and compute partition are NAS ParagonTimings reported for thBT in Figure 2 are
given in Table 3. according to theNPB rules. The first run take829 sec-
onds whereas the second runs tal@3seconds. The per-

Table 3: Compiling and executing on Mesh formance of the second run is ab&@% better than the

" - - first run.
Service Partition Compute Partition
Figure 2: APPBT from NPB on 64 compute nodes
700
> f77 prog.f > f77 prog.f -nx
> a.out > a.out -sz 1 eoor
> a.out -sz 64 500|-
8400*
5.4: Numerical experiments 5 w0l
The following two numerical experiments were pe 200¢
formed: 100
(a) First experiment: Experiment in which no interpro-
cessor communication is involved and only communic ° IstRun Znd Run

tion is due to the paging-in of executable code from t...

service node to the compute node and if memory require- It is clear from the Figures 1-2 that the performance of
ment exceed$ MB per node, then paging-out of the the second run is about 30% to 40% higher than the first
unused part of th@SFserver from the compute nodes to run. This degradation in the performance for the first run is
the boot node. The single no@AS 3routine DGEMM not acceptable since users will always run their code once.
was used. Figure 3 shows the performance BGEMM on two

(b) Second experiment:Experiment in which interpro- compute nodes , i.e. on nofleandnode 1 The function
cessor communication is involved in addition to the com- gsync was used to synchronize all node processes. The
munication due to paging-in and paging-out. TB& function gsync [6] performs a global synchronization
application from thé&NPBwas used. operation. When a node process callsgbgnc() func-

tion, it waits until all other nodes in the application call
gsync() before continuing. All nodes in the application
must callgsync before any node in the application can
continue. TheMFLOPS rate shown in Figures 3-8 are for
the first run. The performance has decreased frdm
MFLOPSto 22 MFLOPS

Figure 4 shows the performance BE&EMM on four

Figure 6 shows the performance@BEMV on sixteen
nodes. Here the average performance has been further
decreased to abo& MFLOPS The performance on at
least one node (nodd is 21 MFLOPS much better than
the rest of the nodes.

compute nodes. The performance has further degraded to

an average of about3 MFLOPSexcept for nodel on
which it is aboutl8 MFLOPS The reason for relatively
better performance on nodehan on node§, 2and3 is

that nodel happens to be the first node to receive the

empty data arrays from the service node.

Figure 4: DGEMM on four compute nodes.
20

181 7

MFLOPS
=
=
|

(o]
T
I

0 3

1
Node Num%er

Figure 5 shows the performance BE&EMM on eight

Figure 7 shows the performancel#EMVIon 32 com-
pute nodes. Here the average performance has further
decreased to abo8tMFLOPS Unlike in Figures 4-6, here
the performance on two compute nodes (r2siend node
29) is relatively better than on the rest of the nodes.

compute nodes. The performance has degraded further to

an average of MFLOPS The performance on nodkeis
relatively better than the rest of the nodes.

Figure 8 shows the performanceDgEMM on 64 com- to terminate the process of loading. From our experience
pute nodes. Increasing the number of nodes from 32 to 64wve found that the run time optiempl k is not a solution
has further degraded the performance. Here the perforfor codes which need more thanMB of memory per
mance on node, 26 and33 is much better compared to node.
the rest of the nodes.

8.2: Dynamic Allocation of memory

7. Hypothesis The dynamic allocation of memory can be performed in
a number of ways. The best method is to useAtHeO-

It is clear from Figures 2-8 that as we increase the num-CATE statement [13]. ThALLOCATE statement allocates
ber of nodes, the performance decreases #bMFLOPS storage for each pointéiased variable and allocatable
to 1.5 MFLOPSfor the first run. The unused part of the common block which appears in the statement. The
OSFserver must be paged out to the boot node, whenevePEALLOCATE statement causes the memory allocated for
the memory requirement is more than at®MB, to pro- each pointebased variable or allocatabl@OMMON block
vide space for the arrays BandC in the program on the that appears in the statement to be deallocated. Fortunately
compute node. While the paging-out of the unused part ofboth ALLOCATE andDEALLOCATE are available [13]. A
the OSF server is going on, pages containing arrays dynamic or allocatabl€OMMON block is a common block
andC are being paged-in from the service node to each ofwhose storage is not allocated until an exphtit OCATE
the compute nodes. These paging-in and paging-out activstatement is executed. The syntax of statemahtsO-
ities take place simultaneously at the first reference andCATE andDEALLOCATE is given inTable 4 and their use
use of the arrayA, B andC andnot at theDl MENSI ON in Appendix A
statement in the program. The net result is that the simulta-)
neous paging-in and paging-out creates additiondictraf Table 4: Syntax for using ALLOCATE and
in the network that increases with the increasing number DEALLOCA TE statements
of compute nodes.

ALLOCATE (nane[, nane]...[, STAT= var])

8: Remedies for eliminating paging-in of

DEALLOCATE (al,[,al]...[, STAT= var])
empty data arrays

nane is a pointetbased variable or the name of an
8.1: Locking the memory at run time allocatable COMMON block enclosed in slashes

The activity of paging-in can be removed by using the al is a pointetbased variable or the name of an allocat-

run time optior+ pl k [6] which causes all of the applica- ableCOMVON block enclosed in slashes.
tion’s pages to be brought at the start of execution and to \, 5 is an integer variable, integer array element, or
remain resident. The results of doing this are shown in inte ber of

i : ger member of a structure.
Figure 9. The performance on each compute nod is
MFLOPS in the first run.

The run time option pl k was tried on codes of dif- We have found that the mostfesdtive and elegant
ferent sizes and we found that for a code that needs aboumethod of removing the undesirable and unnecessary pag-
7 MB per compute node, the time for loading the code ing-in of empty arrays provided by tiaragonOSis to
from the service node on to the compute node became veryise dynamic allocation of memory inside the application.
large. In many cases load time became ggeléinat we had The dynamic allocation of memory creates the arfqyB

andC at run time on the compute processors rather than aformance goes down as the unused part oOBE server
compile time on the service node. The static allocation ofis being paged-out from the compute node to the boot

memory creates the arrafs BandC at compile time and

node to make space available for the application. As we

at run time they are paged-in to the compute processors afurther increase the size of the matrix, a limit is reached at
and when they are first referenced and used. The perforaboutl0 MBbeyond which none of th@SFserver is left

mance ofDGEMMusing dynamic allocation of memory is
shown in Figure 10. The dynamic memory allocation

removes a serializing bottleneck and communication over-

head.

The results foBT using dynamic allocation of memory
are shown in Figurell We find that dynamic allocation of
memory increases the performanceBif by 29% and
gives the correct performance in the first run.

Figure 11: BT using dynamic allocation of memory
600

5001

w B

o o

o o
T T

Time in Seconds

N

o

o
T

100

1st Run 2nd Run

9: Paging of application against itself

The performance ddGEMMas a function of the size of
the matrix is shown in Figure 12. When the size of the
matrix is512x512it needs abou.3 MB of memory per
node. As we increase the size of the matrix, initially per-

to be paged-out and the application starts paging-out
against itself. The &fct of paging an application against
itself is clearly seen at aboilt MB when the performance

of the DGEMMgoes down to abodt MFLOPS

Figure 12: MFLOPS Vs. Size of the matrix.

50

(6 MB)(10 MB)(ll MB

3]
T

600 700 800
Size of Matrix

3?00 400 500 900

10: Conclusions

(1) Paging-in of data (empty arrays) during execution
time degrades the performance of the application and
should be avoided. This service performed byRamgon
operating system is unnecessary and is undesirable.

(2) One can use the run-time optiopl k to lock the
memory to resolve the problem. Howeuée use of the
pl k option enormously increases the load time if the
memory required by the application is abautMB or
higher per node. A genuine remedy for unnecessary
effects of paging is to use dynamic allocation of memory
using ALLOCATE andDEALLOCATE statements [13]. On
NAS Paragoror any otherParagonsystem, irrespective
of the memory requirement of the application, dynamic
allocation of memory shouldLWAYS be used to elimi-
nate the service of paging-in of empty data arrays from the
service node to the compute processbhe use of
dynamic allocation of memory increases the performance
of applications, considered in the present work, by 30% to
40%.

(3) The performance of the application starts decreas-
ing when the application starts paging-out and ultimately it
becomes unacceptable. On M&SParagon after10 MB
the application starts paging against itself.

(4) The use of virtual memory by tl@SF/1AD oper-
ating system has been a major drawback to the perfor-
mance of theParagon The lage amount of memory
required byOSF/1 ADreduces available user memory to
about6 MB per compute processorhis is a step back-

ward from the roughl$ MB per node memory available to [13] PARAGONM OSF/1, Fortran Language Refence
the user on théntel iPSC/860 Using the virtual memory Manual, April 1993, Intel Corporation.

system can lead to a significant drop in performance, and _ .

to other not very transparent performance variations, [14] Proceedings of Intel Supsmputing Usés Gioup
which make the machine less predictable for the.user Meeting Oct. 3-6, 1993, St. Louis, Missouri

These variations and the lack of memory could be toler- [f15] Paragon System SoftwaRelease 1.1, Release Notes for
ated as a price for increased system stability and ease o the Paragon XP/S SystemOctober 1993, Intel
use. Howeverthe promise of usin@SF/1 ADfor more

Corporation.
reliable production operation has not yet materialized. P _ o
This may change over time in favor of tharagon [16] Thanh Phung, private communication, Nb993.
(5) For any robust architecture and operating system, APPENDIX A

the performance of the applications should not change

whether they are run with static allocation of memory or Dynamic Allocation of Memory in Fortran
dynamic allocation of memon®On theParagon system,

the performance of the applications is considerably higher

(30%to 40%in the present paper) if dynamic allocation of Figure 13 shows the Fortran program with static alloca-

memory rather than static allocat_ion of memory is used. jon of memory and Figure 14 shows a modified progam
In summaryther_e are still major challenges ahe'c_ld for with dynamic allocation of memary

the Paragon compilers and systems softwaratel is

aware of the problem but so far it has not been docu-

mented anywhere, including the latétlease Notes 1.1

[15, 16]. Figure 13:Fortran program with static allocation of
Acknowledgment One of the authors (SS) grate- memory

fully acknowledges many discussions with David McNab,

Bernard Taversat, Wliam J. Nitzbeg, Thanh Phung, Art PROGRAMabc

Lazanof, and Todd F Churchill. .
REAL a(512), b(512), c(512), x(1024)

* The authors are employees@bmputer Sciences Cor- COMMON /bl 00"15 X

poration The work is supported througtASAcontract cal | subl(a,b,c)
NAS2-12961 .
END
References
Figure 14:Fortran program with dynamic allocation
[1] E. Anderson et al.LAPACK Users’ Guide SIAM, of memory
Philadelphia, 1992.
[2] Overview of the 868" XR Supeomputing PROGRAM abc
Microprocessor1990, Intel Corporation. PARAMETER (nl1=512, n2=1024)
[3] Overview of the 860" XP Superomputing -
Microprocessor1991, Intel Corporation. REAL a(nl), b(nl), c(nl), x(n2)
[4] D. Bailey et al., edsThe NAS Parallel Benchmarks PO NTER (pl, a)
Technical Report RNR-91-02, NAS Ames Research PO NTER (p2, b)
Center Moffet Field, California, 1991. PO NTER (p3, c)

[5] D. Bailey et al.,The NAS Parallel Benchmark Resplts
IEEE Parallel & Distributed technolog$3-51, February COMMON, ALLOCATABLE /bl ockl/ x

1993. = _
PARAGONM OSF/1 e Intel . ALLOCATE (a, STAT = isa)
[6] o 1(;(9)3 OSF/1, Uses Guide Intel Corporation, ALLOCATE (b, STAT = i sb)
. . - ALLCCATE (c, STAT = isc)
[71 OSF/T™ Operating System UserGuide Revision 1.0, ’ .
Prentice Hall Englewood, New Jersé992. ALLOCATE (/ bl ockl/, STAT = isbl k1)
[8] iPSC/860 PoSolvefM-SES Manual May, 1991, Intel
Corporation. CALL subl(a,b,c)
[9] iPSC/860 PuSolvefM-DES Manual March 1992, Intel o
Corporation. DEALLCOCATE(a)
[10] Intel iPSC/860 Uses Guide April 1993 DEALLOCATE(b)
[11] PARAGONM OSF/1 Fortran Compiler Uses Guide, DEALLOCATE(c)
Intel Corporation, April 1993. DEALLQOCATE(/ bl ock1/)
[12] CLASSRCK, Basic Math Library Usés Guide Kuck & END

Associates, Release 1.3, 1992.

Enhancing Applications Performance on Intel Paragon
thr ough Dynamic Memory Allocation’

Subhash Saini and Horst Simon
NAS-NASA Ames Research Centéfail Stop 258-6, Mdett Field, CA 94035-1000

Abstract server system buérs and the amount of memory avail-
able for the usés application. Methodology for the inves-
|tigations is given in Sec. 5. Based upon our numerical

memory (VM). The OS manages virtual memory by per_experiments, the for_mglatgd hypothesjs i$ given in Sec. 7.
forming two services. Firstlyaging-in service pages the The remedies for eliminating the paging-in of empty data

executable code dm the service node to the compute &rays and thereby enhancing the performance of the
nodes. This includes the paging-in of empty dataecorr @pplications are given in Sec. 8. Section 9 deals with the
sponding to statically allocated arrays. Secongigging- variation in _performance Whe_n the apphcatlo_n starts pag-
out service is performed by paging the unused part of theiNd against itself. Our conclusions are drawn in Sec. 10.
OSF server to the boot node to make space available for
the usels executable code. These paging-in and paging-
out activities take place simultaneously and drastically
degrade the performance of the user code héve inves-
tigated this poblem in detail, and found that the dynamic
allocation of memory completely eliminates the unneces-
sary and undesirable effects of paging-in empty data
arrays fpm the service node to the compute n_odes and The Paragonsystem is based on ti6d bit i860 XP'M
thereby inceases the performance of the applications con- microprocessor [3] by Intel. TH860 xPM microproces-

. . 0 o

sideted in the pesent work by 30% to 40%. sor has2.5 million transistors in a single chip and runs at
] _ 50 MHz The theoretical speed 190 MFLOPSIn 32 bit

1: Intr oduction floating point and75 MFLOPSfor 64 bit floating opera-

tions. Thei860 XP'M features32 integer address registers

The Numerical Aendynmical Simulation (NAS) Sys- with 32 bits each. It ha32 floating point registers witB2
tems Divisionreceived arintel Touchstone Sigmproto- bits each. The floating point registers can also be accessed
type modelParagon XP/S-13n February 19931t was asi16floating point registers witB4 bits each o8 floating
found that performance of many applications including the point registers witi28 bits each. Each floating point reg-
assembly coded single no@AS 3routine DGEMM [1] ister has two read ports, a write port and two-bidirectional
was lower than the performance bimel iPSC/860This ports. All these ports aré4 bits wide and can be used
finding was quite puzzling since the clock of the micropro- simultaneouslyThe floating point registers serve as input
cessoi860 XPused in théParagonis 25%faster than the g the floating point adder and multipliém vector compu-
microprocessoi860 XRused in thentel iPSC/8602,3]. tations, these registers are used asetmifvhile the data
It was also found that the performance of MAS Parallel cache serves as vector registers. /868 XPM micropro-
Benchmarks (NPE),5] is enhanced by aboB0%if they cessor hag6 KBof instruction and.6 KB of data caches.

are run for second time inBDloop. Furthermore, the per- ; . ;
formance oDGEMMwas identical for the first run and the The data cache hasiabit path to the integer unit al@8

second run on a service node, but on a compute node thbit data path to the floating point unit. TiB&0 XP™ has
performance of the second run was abtfl¥ better than a number of advanced features to facilitate high execution
the first run. These anomalies in the performance on therates. Thé860 XP'M microprocessos floating point unit
Paragonled us to investigate the problem in more detail. integrates single-cycle operatiod¥ bit and 128 bit data
This in turn led us to propose a method of dynamic alloca- paths on chip and B28bit data path to main memory for
tion of memory that increases the performance of thefast access to data and transfer of results. Floating point

The Paragon operating system (OS) supports virtual

2. Paragon Overview

2.1: The i860 XP micoprocessor

applications by abotg0%to 40% add, multiply and fetch from main memory are pipelined
In Sec. 2 we give a brief overview of tRaragonsys- operations, and they take advantage of a three-stage pipe-
tem. Sec. 3 gives the description of BIeAS 3kernel and line to produce one result every clock f8# bit add or

NPB used in the investigations. Section 4 discusses themultiply operations an@4 bit adds. Thes4 bit multiplica-
allocation of memory per node for thngicrokernel, OSF tion takes two clocks.

2.2: NAS Intel Paragon XP/S-15 at this time, for a total @27 nodes. When a user logs onto
the Paragon the shell runs on one of the four service

A single node of théaragon XP/S-136] consists of nodes. In the current release of Beragon OSprocesses

two i860 XP'M microprocessors: one for computation and 40 ot move between service nodes to provide load bal-
the other for communication. The compute processor is for2Ncing. Howeverthe load leveler decides on which node a
computation and the communication processor handles alPrOcess should be started. In principle, partitions and sub-
message-protocol processing thus freeing the computatiorP@rtitons may overlap. For instance, there could be a sub-
processor to do computations. Currenthe communica- partition caIIedcompute.part]:o.n.5|st|ng of node®-31 of
tion processor isotused in the&NASParagon Each com- -COMpute and another subpartition calletompute.part2
pute processor haks MB of local memory but aNAS consisting of node45-63 of .compute However in the
only about 6 MB is available for applications, the rest current release of the operatlng_system_ori\tAS Para-
being used for the micro kern€)SF server and system gon, _there are wo pr_oblems which restrict the_ use of sub-
buffers. partitions. First, running more than one application on a
The NAS Paragm has256 slots for nodes. Slots are 1°de (€ither two jobs in the same partition or jobs in over-
given physical node numbers frobnthrough255. Slots Iappmg partitions) may cause the system to crash. Second,
are physically arranged in a rectangular grid of &&ey Fhe eX|sten_0e of overlapping partitions sometimes causes
16. There are service nodes: four of them hat® MBof jobs to wait when they need not. For these two reasons,

memory each and the other four h@&MB of memory ~ LN€re are currently no subpartitions of thempite parti-
each. ColumrD and columnl4 have no physical nodes, UM All jobs run directly on thecomputepartition.

The service partition contairisnodes in the last column. 3: .

One of these service nodes is a boot node. This boot nodg' - Paragon Operating System

has32 MB of memory and is connected toR@dundant . - .

Array of Independent Disks-1 (RAID-The compute par- TheUNIX operating system was originally designed for
tition has208 nodes which occupy columdsthrough3. sequential computers and is not very well suited to the per-
Compute processors are given logical numbetisrough formance of massively parallel applications. Ha¥agon

207, Compute processors are arranged 116 ay 13 rect- operating system is based_upon two operating systems: the
angular grid . Th@27 nodes are arranged in a two-dimen- Mach system fromCarmegie Mellon Universitand the
sional mesh using wormhole routing network technalogy OP€n Softwa Foundatiors OSF/IAD distributed system

The four service nodes comprise the service partition andfor multicomputers [7]. Th@a(agons_ operating system
provides all thaJNIX features includingirtual memory

provide an interface to the outside world, serving fasra S I
endto theParagonsystem. Besides running jobs on the Shell command andutilities; I/O services; and network-
compute nodes, the service nodes run interactive jobsN9 Support forftp, rpcandNFS EachParagonnode has a
such asshellsandeditors They appear as one computer small microkernel irrespective of the role of the node in
runningUNIX. the system. Th®aragonoperating system provides pro-
Theoretical peak performance 4 bit floating point gramming flexibility through virtual memaryn theory

arithmetic is15.6 GFLOPSfor the 208 compute nodes. virtual memory simplifies application development and

Hardware node-to-node bandwidth280 MBpersecond ~ P°rting by enabling code requiring ggrmemory to run on
in full duplex. a single compute node before being distributed across

. : ltiple nodes. The application runs in virtual memory
The nodes of theNAS Paragon are oganized into mu
groups called partitions [6]. Partitions argamized in a \t';/]g'r?r?smﬁagii;natasgﬁgbﬁ’em;ﬁzzgﬁ?]O%Cecess more memory
hierarchical structure similar to that of thi&NIX file sys- phy y '
tem. Each partition has gathnamein which successive . .
levels of the tree are separated by a periods (*.”), analo-3. Applications used
gous to “/” in theUNIX file system. A subpartition con-

tains a subset of the nodes of the parent partition. 3.1: Basic Linear Algebra Subprograms
Currently on theNAS Paragorthere are no subparti-
tions of .computeor .service The root partition (denoted BLAS 1, 2and3 are the basic building blocks for many

by “.”) contains all227 nodes of thd®aragon There are of scientific and engineering applications [1]. For exam-
two subpartitions of the root partition: the compute parti- ple, the dot product is a basic kernellitel's ProSolver
tion, namedcompute contains208 nodes to run parallel ~ Skyline Equation Solver (B8olverSES)[8], a direct
applications. The service partition, namsdrvice con- solver using skyline storage, useful for performing Finite
tains four nodes devoted to interactive jobs. The remainingElement Structural analysis in designing aerospace struc-
eight nodes are not part of a subpartition and serve as diskures.BLAS 3(matrix-matrix)kernels are basic kernels in
controllers and are connected to fRAID for 1/0. The Intel's ProSolver Dense Equation Solver ¢BolverDES)
four nodes of the service partition appear as one computer9], a direct solver that may be applied in solving compu-
In summary the NAS Paragorsystem hag08 compute tational electromagnetic€EM) problems usingviethod
nodes, HiPPI nodes,1 boot node8 disk hodes4 service of Moments (MOM). BLAS&hdBLAS 3are basic kernels
nodes of whichL is a boot node andl nodes are not used in LAPACK][1]. In the present papere have usedBLAS

3 routine calledGEMMto computeC = A*B, whereA and ning a debugging version of the microkernel. The micro-
B are real general matrices. TBEEMM s a single node kernel is the only system software component that is in the
assembly coded routine and as such involves no interpromemory of each compute node at all times including its

cessor communication. internal tables and bigfrs. TheOSFserver is in the mem-
ory of each compute node initiallyut as pages are needed
3.2: NAS Parallel Benchmarks by the application unused parts of server is paged-out to

the boot node. Across the whole machineRheagon OS

The NPB[4,5] were developed to evaluate the perfor- takes2 GB of memory out of total 08.3 GBof memory

mance of highly parallel supercomputers. One of the mainthus leaving onlyt.25 GBfor the use's application.

features of these benchmarks is thgéncil and paper
specification, which means that all details are specified
algorithmically thereby avoiding many of the faitilties
associated with traditional approaches to evaluating highly5.1: Operating System and Compiler

parallel supercomputers. ThE°B consist of a set of eight

problems each focusing on some important aspect of TheParagon O3used is versioRR1.1 and the~ortran
highly parallel supercomputing for computational aero- compiler is4.1 [11]. The compiler options used are the
sciences. The eight problems include five kernels andf 77 -O4 -Mect -Knoieee abc.f -lkmath
three simulated computational fluid dynami¢GFD) [12] and the compilation was done on the service node.
applications. The implementation of the kernels is rela- There is a compiler option by which one may set the size
tively simple and straightforward and gives some insight of the portion of the cache used by the vectorizemim-

into the general level of performance that can be expectede bytes. Thisnumbermust be a multiple of6, and less

for a given highly parallel machine. The other three simu- than the cache size 16384 of the microprocei§&dr XP
lated CFD applications need morefeft to implement on In most cases the best results occur winemberis set to
highly parallel computers and are representative of the4096 which is the default. In view of this we decided to
types of actual data movement and computation neededhoose the default siZeKB and the highest optimization
for computational aerosciences. In the present paper level of4 was used. This level of optimization generates a
have used the block tridiagon@T) benchmark, which basic block for eaclrortran statement and scheduling
was ported from théntel iPSC/860[10] to theParagon within the basic block is performed. It does perform
The NPB all involve significant interprocessor communi- aggressive register allocation for software pipelined loops.
cation with the exception of the Embarrassingly Parallel In addition, code for pipelined loops is scheduled several
(EP) benchmark which involves almost no interprocessor ways, with the best way selected for the assembly file. The

5: Methodology

communication. option - Knoi eee was used, which produces a program
that flushes denormals @ on creation (which reduces
4 Distribution of memory on Paragon underflow traps) and links in a math library that is not as

accurate as the standard librdoyt ofers greater perfor-
) mance. This library &érs little or no support for excep-
The exact amount of memory available for the sser tjonal data types such B$F andNaN, and will not trap on
code is very hard to estimate as it depends upon severaych values when encountered. If used while compiling, it
factors such as the history of tRaragonsystem since the (g|is the compiler to perform real and double precision
last reboot, number of nodes, size of the systefietsuet gjyides using an inline divide algorithm thafest greater
by the user at run time etc. The approximate breakdown ofperformance than the standard algorithm. This algorithm
memory per node for tHEAS Paragons shown in@ble produces results that tf from the results specified by
1. Memory taken by the microkernel per node ofNA& {he |EEE standard by no more than three units in the iast

o I Ip).
Table 1: Distribution of Memory on each NAS compute place(ulp)
processor 5.2: Procedure for 1st Run and 2nd Run
Component of OS Memory in MB It was found that the performance NPB codes is
enhanced by aboB0%if they are run for second time in a
Microkernel 5 DO loop. Furthermore, the performance DEEVM was

identical for the first run and second run on a service node

OSF Server 4 but on a compute node the performance of the second run

M Bdé 1 was aboutl0% better than the first run. In our numerical
essage buer results section we will present results for a first run and a

Free Memory 6 second run of an application. The procedure to obtain first

run and second run for a given application is illustrated in
Table 2. In this table, BOloop indexi running froml to
Paragonis bigger than claimed bntel as theNASis run- 2 is inserted just before the section of the code we want to

time for benchmark purposes. In this table fingt run 6: Results
corresponds to=1 and thesecond rurcorresponds te=2

as shown in able 2. The overhead in calling the function Fig 1(a) shows the results for the assembly c@&isdlS

DCLOCK was estimated to be abdubx10%second. 3 routine DGEMM on a service node obtained for the first
run and the second run. Notice that on the service node the
Table 2: Procedure for obtaining first run and second results for first run and second run are identical. The rou-
run tine DGEMMis a single node routine and as such involves
no interprocessor communication.
PROGRAM abc
I Figure 1(a): DGEMM on service node. Figure 1(b): DGEMM on compute node.
I:D | — 1, 2 50 50
t0 = DCLOCK() 45 I 45y
t1 = DCLOCK 40(I 40
CALL[XEENN(,...,) 35 35
t2 = DCLOCK() 0 o
tine =t2 - (tl - tO) £ . £ .
ENDDO g Z
20+ 20
END 15 15
10| 10
50 5
5.3: Compiling and linking on the partitions 0 0
1st Run 2nd Run 1st Run 2nd Run

The Paragonsystem has two types of partitions: (a) 2 Fig 1(b) shows the results for the assembly cdiedlS
service partitiorand (b) a&compute partitionThe partition 3 on a compute node for the first run and second run. The
where an application runs can be specified when you comperformance of thBGEMVis 27 MFLOPS for the first run
pile and execute it. Thewx switch defines the preproces- and 45 MFLOPSfor the second run. The performance
sor symbol NODE and links with thenx library libnx.a obtained by the second run is abd06 better than the
[11]. It also links with the start-up routine—the controlling - performance by the first run.
process that runs in the service partition and starts up theé Figure 2 shows the performance of BiE TheBT code
application in the compute partition. Commands to run the ysed is arintel iPSC/860version which was ported to the
application on service partition and compute partition are NAS ParagonTimings reported for thBT in Figure 2 are
given in Table 3. according to theNPB rules. The first run take829 sec-
onds whereas the second runs tal@3seconds. The per-

Table 3: Compiling and executing on Mesh formance of the second run is ab&@% better than the

" - - first run.
Service Partition Compute Partition
Figure 2: APPBT from NPB on 64 compute nodes
700
> f77 prog.f > f77 prog.f -nx
> a.out > a.out -sz 1 eoor
> a.out -sz 64 500|-
8400*
5.4: Numerical experiments 5 w0l
The following two numerical experiments were pe 200¢
formed: 100
(a) First experiment: Experiment in which no interpro-
cessor communication is involved and only communic ° IstRun Znd Run

tion is due to the paging-in of executable code from t...

service node to the compute node and if memory require- It is clear from the Figures 1-2 that the performance of
ment exceed$ MB per node, then paging-out of the the second run is about 30% to 40% higher than the first
unused part of th@SFserver from the compute nodes to run. This degradation in the performance for the first run is
the boot node. The single no@AS 3routine DGEMM not acceptable since users will always run their code once.
was used. Figure 3 shows the performance BGEMM on two

(b) Second experiment:Experiment in which interpro- compute nodes , i.e. on nofleandnode 1 The function
cessor communication is involved in addition to the com- gsync was used to synchronize all node processes. The
munication due to paging-in and paging-out. TB& function gsync [6] performs a global synchronization
application from thé&NPBwas used. operation. When a node process callsgbgnc() func-

tion, it waits until all other nodes in the application call
gsync() before continuing. All nodes in the application
must callgsync before any node in the application can
continue. TheMFLOPS rate shown in Figures 3-8 are for
the first run. The performance has decreased frdm
MFLOPSto 22 MFLOPS

Figure 4 shows the performance BE&EMM on four

Figure 6 shows the performance@BEMV on sixteen
nodes. Here the average performance has been further
decreased to abo& MFLOPS The performance on at
least one node (nodd is 21 MFLOPS much better than
the rest of the nodes.

compute nodes. The performance has further degraded to

an average of about3 MFLOPSexcept for nodel on
which it is aboutl8 MFLOPS The reason for relatively
better performance on nodehan on node§, 2and3 is

that nodel happens to be the first node to receive the

empty data arrays from the service node.

Figure 4: DGEMM on four compute nodes.
20

181 7

MFLOPS
=
=
|

(o]
T
I

0 3

1
Node Num%er

Figure 5 shows the performance BE&EMM on eight

Figure 7 shows the performancel#EMVIon 32 com-
pute nodes. Here the average performance has further
decreased to abo8tMFLOPS Unlike in Figures 4-6, here
the performance on two compute nodes (r2siend node
29) is relatively better than on the rest of the nodes.

compute nodes. The performance has degraded further to

an average of MFLOPS The performance on nodkeis
relatively better than the rest of the nodes.

Figure 8 shows the performanceDgEMM on 64 com- to terminate the process of loading. From our experience
pute nodes. Increasing the number of nodes from 32 to 64wve found that the run time optiempl k is not a solution
has further degraded the performance. Here the perforfor codes which need more thanMB of memory per
mance on node, 26 and33 is much better compared to node.
the rest of the nodes.

8.2: Dynamic Allocation of memory

7. Hypothesis The dynamic allocation of memory can be performed in
a number of ways. The best method is to useAtHeO-

It is clear from Figures 2-8 that as we increase the num-CATE statement [13]. ThALLOCATE statement allocates
ber of nodes, the performance decreases #bMFLOPS storage for each pointéiased variable and allocatable
to 1.5 MFLOPSfor the first run. The unused part of the common block which appears in the statement. The
OSFserver must be paged out to the boot node, whenevePEALLOCATE statement causes the memory allocated for
the memory requirement is more than at®MB, to pro- each pointebased variable or allocatabl@OMMON block
vide space for the arrays BandC in the program on the that appears in the statement to be deallocated. Fortunately
compute node. While the paging-out of the unused part ofboth ALLOCATE andDEALLOCATE are available [13]. A
the OSF server is going on, pages containing arrays dynamic or allocatabl€OMMON block is a common block
andC are being paged-in from the service node to each ofwhose storage is not allocated until an exphtit OCATE
the compute nodes. These paging-in and paging-out activstatement is executed. The syntax of statemahtsO-
ities take place simultaneously at the first reference andCATE andDEALLOCATE is given inTable 4 and their use
use of the arrayA, B andC andnot at theDl MENSI ON in Appendix A
statement in the program. The net result is that the simulta-)
neous paging-in and paging-out creates additiondictraf Table 4: Syntax for using ALLOCATE and
in the network that increases with the increasing number DEALLOCA TE statements
of compute nodes.

ALLOCATE (nane[, nane]...[, STAT= var])

8: Remedies for eliminating paging-in of

DEALLOCATE (al,[,al]...[, STAT= var])
empty data arrays

nane is a pointetbased variable or the name of an
8.1: Locking the memory at run time allocatable COMMON block enclosed in slashes

The activity of paging-in can be removed by using the al is a pointetbased variable or the name of an allocat-

run time optior+ pl k [6] which causes all of the applica- ableCOMVON block enclosed in slashes.
tion’s pages to be brought at the start of execution and to \, 5 is an integer variable, integer array element, or
remain resident. The results of doing this are shown in inte ber of

i : ger member of a structure.
Figure 9. The performance on each compute nod is
MFLOPS in the first run.

The run time option pl k was tried on codes of dif- We have found that the mostfesdtive and elegant
ferent sizes and we found that for a code that needs aboumethod of removing the undesirable and unnecessary pag-
7 MB per compute node, the time for loading the code ing-in of empty arrays provided by tiaragonOSis to
from the service node on to the compute node became veryise dynamic allocation of memory inside the application.
large. In many cases load time became ggeléinat we had The dynamic allocation of memory creates the arfqyB

andC at run time on the compute processors rather than aformance goes down as the unused part oOBE server
compile time on the service node. The static allocation ofis being paged-out from the compute node to the boot

memory creates the arrafs BandC at compile time and

node to make space available for the application. As we

at run time they are paged-in to the compute processors afurther increase the size of the matrix, a limit is reached at
and when they are first referenced and used. The perforaboutl0 MBbeyond which none of th@SFserver is left

mance ofDGEMMusing dynamic allocation of memory is
shown in Figure 10. The dynamic memory allocation

removes a serializing bottleneck and communication over-

head.

The results foBT using dynamic allocation of memory
are shown in Figurell We find that dynamic allocation of
memory increases the performanceBif by 29% and
gives the correct performance in the first run.

Figure 11: BT using dynamic allocation of memory
600

5001

w B

o o

o o
T T

Time in Seconds

N

o

o
T

100

1st Run 2nd Run

9: Paging of application against itself

The performance ddGEMMas a function of the size of
the matrix is shown in Figure 12. When the size of the
matrix is512x512it needs abou.3 MB of memory per
node. As we increase the size of the matrix, initially per-

to be paged-out and the application starts paging-out
against itself. The &fct of paging an application against
itself is clearly seen at aboilt MB when the performance

of the DGEMMgoes down to abodt MFLOPS

Figure 12: MFLOPS Vs. Size of the matrix.

50

(6 MB)(10 MB)(ll MB

3]
T

600 700 800
Size of Matrix

3?00 400 500 900

10: Conclusions

(1) Paging-in of data (empty arrays) during execution
time degrades the performance of the application and
should be avoided. This service performed byRamgon
operating system is unnecessary and is undesirable.

(2) One can use the run-time optiopl k to lock the
memory to resolve the problem. Howeuée use of the
pl k option enormously increases the load time if the
memory required by the application is abautMB or
higher per node. A genuine remedy for unnecessary
effects of paging is to use dynamic allocation of memory
using ALLOCATE andDEALLOCATE statements [13]. On
NAS Paragoror any otherParagonsystem, irrespective
of the memory requirement of the application, dynamic
allocation of memory shouldLWAYS be used to elimi-
nate the service of paging-in of empty data arrays from the
service node to the compute processbhe use of
dynamic allocation of memory increases the performance
of applications, considered in the present work, by 30% to
40%.

(3) The performance of the application starts decreas-
ing when the application starts paging-out and ultimately it
becomes unacceptable. On M&SParagon after10 MB
the application starts paging against itself.

(4) The use of virtual memory by tl@SF/1AD oper-
ating system has been a major drawback to the perfor-
mance of theParagon The lage amount of memory
required byOSF/1 ADreduces available user memory to
about6 MB per compute processorhis is a step back-

ward from the roughl$ MB per node memory available to [13] PARAGONM OSF/1, Fortran Language Refence
the user on théntel iPSC/860 Using the virtual memory Manual, April 1993, Intel Corporation.

system can lead to a significant drop in performance, and _ .

to other not very transparent performance variations, [14] Proceedings of Intel Supsmputing Usés Gioup
which make the machine less predictable for the.user Meeting Oct. 3-6, 1993, St. Louis, Missouri

These variations and the lack of memory could be toler- [f15] Paragon System SoftwaRelease 1.1, Release Notes for
ated as a price for increased system stability and ease o the Paragon XP/S SystemOctober 1993, Intel
use. Howeverthe promise of usin@SF/1 ADfor more

Corporation.
reliable production operation has not yet materialized. P _ o
This may change over time in favor of tharagon [16] Thanh Phung, private communication, Nb993.
(5) For any robust architecture and operating system, APPENDIX A

the performance of the applications should not change

whether they are run with static allocation of memory or Dynamic Allocation of Memory in Fortran
dynamic allocation of memon®On theParagon system,

the performance of the applications is considerably higher

(30%to 40%in the present paper) if dynamic allocation of Figure 13 shows the Fortran program with static alloca-

memory rather than static allocat_ion of memory is used. jon of memory and Figure 14 shows a modified progam
In summaryther_e are still major challenges ahe'c_ld for with dynamic allocation of memary

the Paragon compilers and systems softwaratel is

aware of the problem but so far it has not been docu-

mented anywhere, including the latétlease Notes 1.1

[15, 16]. Figure 13:Fortran program with static allocation of
Acknowledgment One of the authors (SS) grate- memory

fully acknowledges many discussions with David McNab,

Bernard Taversat, Wliam J. Nitzbeg, Thanh Phung, Art PROGRAMabc

Lazanof, and Todd F Churchill. .
REAL a(512), b(512), c(512), x(1024)

* The authors are employees@bmputer Sciences Cor- COMMON /bl 00"15 X

poration The work is supported througtASAcontract cal | subl(a,b,c)
NAS2-12961 .
END
References
Figure 14:Fortran program with dynamic allocation
[1] E. Anderson et al.LAPACK Users’ Guide SIAM, of memory
Philadelphia, 1992.
[2] Overview of the 868" XR Supeomputing PROGRAM abc
Microprocessor1990, Intel Corporation. PARAMETER (nl1=512, n2=1024)
[3] Overview of the 860" XP Superomputing -
Microprocessor1991, Intel Corporation. REAL a(nl), b(nl), c(nl), x(n2)
[4] D. Bailey et al., edsThe NAS Parallel Benchmarks PO NTER (pl, a)
Technical Report RNR-91-02, NAS Ames Research PO NTER (p2, b)
Center Moffet Field, California, 1991. PO NTER (p3, c)

[5] D. Bailey et al.,The NAS Parallel Benchmark Resplts
IEEE Parallel & Distributed technolog$3-51, February COMMON, ALLOCATABLE /bl ockl/ x

1993. = _
PARAGONM OSF/1 e Intel . ALLOCATE (a, STAT = isa)
[6] o 1(;(9)3 OSF/1, Uses Guide Intel Corporation, ALLOCATE (b, STAT = i sb)
. . - ALLCCATE (c, STAT = isc)
[71 OSF/T™ Operating System UserGuide Revision 1.0, ’ .
Prentice Hall Englewood, New Jersé992. ALLOCATE (/ bl ockl/, STAT = isbl k1)
[8] iPSC/860 PoSolvefM-SES Manual May, 1991, Intel
Corporation. CALL subl(a,b,c)
[9] iPSC/860 PuSolvefM-DES Manual March 1992, Intel o
Corporation. DEALLCOCATE(a)
[10] Intel iPSC/860 Uses Guide April 1993 DEALLOCATE(b)
[11] PARAGONM OSF/1 Fortran Compiler Uses Guide, DEALLOCATE(c)
Intel Corporation, April 1993. DEALLQOCATE(/ bl ock1/)
[12] CLASSRCK, Basic Math Library Usés Guide Kuck & END

Associates, Release 1.3, 1992.

